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State-of-the-art deep learning has a carbon emission problem. 
Can neuromorphic engineering help?
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Abstract 

Deep learning has attracted a lot of attention from both academic, as well as, industrial parties mainly due to its 
success when working large datasets and its ability to improve performance by scaling up the size of the models. 
However, the current trends of training state-of-the-art deep learning models are worrisome. Recent data show that 
training cutting-edge models is vastly energy inefficient and pose a threat to the democratisation of this technolo-
gy: the resources  required to train a model might be accessible only by a few large corporations in the near future. 
Moreover, executing trained state-of-the-art deep learning models on mobile devices with limited resources is cur-
rently not possible due to the large amounts of computations, memory and energy requirements these models need. 
Neuromorphic engineering is a relatively recent interdisciplinary research field that attempts to simulate neurons and 
synapses directly on hardware and at a level that is closer to biology. The advantage of this approach is that because 
neurons are simulated in an asynchronous manner the overall energy consumption is very low since neurons that do 
not participate in the computations consume nearly zero energy. While a method to train neural networks directly 
on neuromorphic devices has yet to be discovered it has already been demonstrated that executing trained neural 
networks on neuromorphic platforms comes with large energy savings and lower prediction latencies.

Key Words: Deep learning, machine learning, artificial intelligence, carbon emissions, neuromorphic engineering, 
low-power, low-latency
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1. Introduction

Deep Learning [1], part of the broader family of machine 
learning algorithms that fall under the umbrella of Artificial 
Intelligence (AI), has attracted the attention of the industry 
and academic institutions over the past decades. The most 
popular form of deep learning algorithms is supervised 
learning in which the goal for a model is to learn a function 
that maps an input to an output based on example cases. 
Ultimately, the aim of supervised learning algorithms is to 
be able to predict the class labels of unseen data correct-
ly. Deep Learning models have surpassed other machine 
learning methods in virtually all supervised learning tasks 
and have achieved state-of-the-art results in computer vi-
sion tasks (classification, medical imaging, face recognition), 
speech/audio recognition tasks, machine translation, natu-
ral language processing [2].

The fundamental building block of Deep learning is the 
artificial neuron which is loosely based on biological neu-
rons (Figure 1). Artificial neurons when combined together 
with other artificial neurons, form Artificial Neural Networks 
(ANNs), while the various ways that artificial neurons can be 
combined together give rise to the different deep learning 
architectures. Each artificial neuron receives one or more 
input through its dendrites, often referred to as weights or 
model parameters in the literature. These inputs are multi-

plied with the weights, summed up and passed through a 
non-linear activation function to become the input to the 
neurons in the next layer.

In supervised learning, an optimization algorithm is used 
in conjunction with a dataset (each example of the dataset 
consists of the input data as well as the desired output also 
known as target label) that is related to the problem that 
needs to be solved, and a loss function that decides how to 
update the model parameters. Describing the whole train-
ing process in detail is beyond the scope of this article but 
on a very high level is as follows: The data are presented to 
the input layer of the network and based on this input the 
neural network produces an output. Then the loss function is 
used to compute the error given the prediction of the mod-
el and the ground truth (desired output) of that particular 
input example. The error is then passed to the optimization 
algorithm that updates the model parameters in a back-
wards manner, starting from the output layers and moving 
to the input layers. This process typically takes thousands of 
iterations until a model has been trained successfully.  

Currently there exist a number of Deep Learning architec-
tures for supervised learning and the choice often depends 
on the type of problem to be solved. Roughly speaking, if 
the input data are numeric or categorical then it is common 
to use fully-connected neural networks, in which each neu-
ron in a previous layer is connected to each neuron to the 
next layer. If the data are images then convolutional neural 
networks (CNNs) are preferred. CNNs are a popular choice 
when working with images because they preserve spatial 
information of the previous layer and because each neuron 
in the next layer shares weights. This weight-sharing feature 
results in models with much fewer parameters, and as a con-
sequence becomes easier to scale up to very deep (multiple 
layers) networks compared to fully-connected networks. Fi-
nally, if the data are sequential, for example audio sequenc-
es or text manuscripts, it is common to use recurrent neural 
networks (RNNs). Figure 2 presents some example use-cas-
es of various deep learning architectures applied for cardio-
vascular image analysis. 

As briefly mentioned in a previous paragraph, the learning 

Figure 1. The basic components of an artificial neuron. The input 
signal (A) is multiplied by the neuron’s weights (W). The result 
is added together (x) and then passed through a non-linear 
activation function (f). Figure recreated from [3].
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process of deep learning requires thousands of iterations 
and this number is not known a priori as it depends on the 
amount of data and the complexity of the task. On top of 
that, researchers are faced with additional parameters that 
affect the learning performance of a model. These parame-
ters, referred to as hyperparameters in the literature, include 
the learning rate (how much the optimisation algorithm will 
change the model parameters each iteration), total num-
ber of layers of neurons, number of neurons per layer, and 
activation functions of the neurons to name a few. The key 
point is that a lot of experimentation and empirical effort is 

required in order to find the optimal combination of hyper-
parameters that might lead to a successfully trained model.

 

1.1. Current technologies for accelerating  
state-of-the-art deep learning research  
and the potential hazards

To speed up this experimentation process researchers uti-
lise specialised computing hardware called Graphics Pro-
cessing Units (GPUs), designed for efficient matrix multipli-
cations and convolutions, which constitute the majority of 

Figure 2. Example use-cases of various deep learning architectures applied for cardiovascular image analysis. The column “Algorithms” 
shows some popular deep learning architectures. The middle column “Tasks” presents some category of problems and finally the last 
column shows some applications where deep learning is currently been used. Figure recreated from [4].
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mathematical operations in deep learning. GPUs however, 
dissipate large amounts of power. For example, Shoeybi 
et al. 2019 [5] trained a very deep network that currently 
achieves state-of-the-art results on a variety of natural lan-
guage processing tasks. This model has 8.3 billion trainable 
parameters and for the training process the authors utilised 
512 V100 NVIDIA GPUs. Training this model took 9.2 days of 
continuous usage of the GPUs. Given that each V100 GPU 
has a maximum power dissipation of 250 W [6], the total 
energy required to train this model is twice the average en-
ergy than an American household consumes within a year 
[7]. While this is clearly not a scalable solution in terms of 
carbon emissions required to train a single model, it also 
poses another threat with regards to the democratisation 
of deep learning research. The amount of computational 
resources and energy costs associated with training state-
of-art models renders them accessible only to large corpo-
rations that have access to these resources. The danger is 
that in the near future it might become very difficult for aca-
demic institutions and startups to research this technology. 
The trends since 2012 show that the computational power 
required for training state-of-the-art deep learning models 
have been increasing exponentially with a 3.4-month dou-
bling time [8].

Besides the training process, running state-of-the-art 
models on mobile devices is nearly impossible due to the 
memory requirements and the number of operations re-
quired to be executed. Currently if a mobile device requires 
a deep learning algorithm it has to send the user-data to 
large data centers that are capable of running deep learn-
ing models. The data goes through the deep learning model 
and the prediction is sent back from the data center to the 
user device [9]. This, however, introduces communication 
overheads thus increasing the latency of the application 
rendering it unsuitable for real-time applications for exam-
ple autonomous robotics such as Unmanned aerial vehicles 
(UaVs) that require quick response times. Moreover, there 
are certain situations where the user-data cannot leave the 
device due to legal constraints (e.g. sensitive medical data). 
In addition, NVIDIA the lead GPU manufacturer used for 

deep learning “estimates that 80-90% of the cost of neural net-
works lies in inference processing” (Inference is the process of 
executing neural networks to solve a task after training has 
been finished) [10]. These reasons gave researchers a good 
incentive for investigating alternative technologies to ena-
ble the execution of deep neural networks in a low-power, 
low-latency manner. Some of these alternative methods are 
inspired by biology, after all the human brain is capable of 
solving complex cognitive tasks while having a maximum 
power dissipation of 20 watts [11].

2. Neuromorphic computing platforms:  
A biologically inspired method for energy 
efficient execution of neural networks

Neuromorphic engineering, a term coined by Carver Mead 
in the early 90s, is an interdisciplinary field that draws in-
spiration from biology, physics, computer science and 
electrical engineering with the purpose of designing hard-
ware models of neuronal and sensory circuits. The neural 
networks models used in neuromorphic engineering are 
called Spiking Neural Networks (SNNs) and the mathemat-
ical equations describing them are based on the empiri-
cal model of the Nobel prize winners Hodgkin and Huxley 
(1952) [12] and the experiments they performed on the 
giant axon of the squid. The main difference of SNNs com-
pared to ANNs is that SNNs introduce the concept of time. 
In ANNs all neurons in the same layer generate a continuous 
(real-valued) output signal synchronously at each propa-
gation cycle, which can be vaguely thought of as the firing 
rate of a neuron within a period of time. Spiking neurons, on 
the other hand, operate in an asynchronous manner. Each 
spiking neuron has a membrane potential which changes 
with time and input signals. Whenever the membrane po-
tential reaches a threshold value a spiking neuron gener-
ates a stereotypical all-or-nothing (binary) signal, referred 
to as spike or action potential (AP). This AP travels along 
the axon of a neuron to the synapses of other neurons and 
alters their membrane potential. The advantages of operat-
ing in an asynchronous manner is that depending on how 
neuromorphic circuits have been implemented (analogue, 
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digital, mixed signal circuits) neurons that do not participate 
in the computations dissipate very low power leading to 
significant energy savings. For example, TrueNorth, a digital 
neuromorphic platform developed by IBM and funded by 
Defense Advanced Research Projects Agency (DARPA), was 
used to simulate a million spiking neurons in real-time (one 
millisecond membrane updates) whilst dissipating 63 mW 
[13]. For the same experiment a software simulator running 
on a conventional computer executed 100 to 200x slower 
than real-time while dissipating 100,000 to 300,000 times 
more energy per synaptic event [13]. Real-time execution 
of neural networks can be a desirable property for cognitive 
neuroscientists and roboticists that would like to test and 
validate their hypothesis using embodied agents while in-
teracting with the environment [14].

The ability of neuromorphic platforms to simulate neural 
networks while requiring very little energy has drawn the 
attention of large semiconductor companies. Intel Labs 
recently announced their own neuromorphic processor 
named Loihi [15], and IBM’s/DARPA-funded TrueNorth neu-
romorphic processor was developed with the purpose of 
“bringing the sort of intelligence that people usually asso-
ciate with the cloud down to the handset” [16]. A similar in-
terested is reflected in the scientific community with large 
European research projects like the Human Brain Project 
[17], [18], which has a dedicated neuromorphic comput-
ing track funding projects like BrainScaleS [19] designed to 
accelerate the simulations of computational neuroscientists 
by running simulations faster than real-time, and SpiNNa-
ker [20] which is designed with the purpose of investigat-
ing new computational frameworks inspired by the human 
brain.

2.1. The current state of training deep spiking neural 
networks

SNNs have been characterized as the 3rd generation of 
ANNs [21] and while it has been theoretically proven that 
they are more computationally powerful than ANNs [22] 
they still lack the popularity of ANNs mainly because SNNs 

cannot directly utilise popular ANNs training algorithms 
such as Backpropagation [23]. This is because backpropa-
gation-based algorithms require differentiable equations, 
whereas the equations that describe spiking neurons are 
discontinuous due to the membrane thresholding function. 
To overcome this obstacle, many research groups have fol-
lowed an intermediate approach. Instead of attempting to 
train directly SNNs they train deep learning models using 
the conventional backpropagation-based algorithms and 
then devise methods for converting the trained models to 
SNNs [24], [25], [26], [27]. While this approach does not 
solve the main problem of deep learning which is the en-
ergy and time required to train a deep learning model it 
does allow for a low-latency low-power execution on neu-
romorphic hardware [28]. The main drawback of this meth-
od is that the conversion process introduces a drop in the 
classification performance of the trained model [24], [25], 
[26], [27]. More recent efforts have attempted to develop 
variations of backpropagation capable of working directly 
with spiking neurons [29], [30]. Results are promising as the 
trained SNNs achieve performance comparable to state-
of-the-art for image recognition tasks. However, neither of 
these methods has attempted to perform the training di-
rectly on neuromorphic hardware. Instead these methods 
use software simulators to train and thus resulting in long 
training times.

Finally, another approach is to investigate biologically 
plausible learning methods that work directly with spikes 
like Spike Timing Dependent Plasticity (STDP) [31], [32]. 
STDP has been derived by biological observations which 
have demonstrated that synaptic plasticity depends on rel-
ative pre- and post-synaptic spike timing. Scientists have 
investigated the possibility of utilising STDP as an unsuper-
vised feature extractor for machine learning tasks. Diehl et 
al. in 2015 [33] investigated the use of a SNN with plastic 
synapses using STDP for updating the model parameters on 
a handwritten digit recognition task and achieved a classi-
fication accuracy of 95%. While this accuracy is far from the 
state-of-the-art for this particular dataset (>99% [34]), the 
advantages of this method is that it is a fully unsupervised 
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method, no ground truth labels and teacher signals are re-
quired and also the STDP algorithm is able to execute direct-
ly on neuromorphic platforms [35].

3. Conclusions

Tech industry giants recognise the need to bring deep 
learning models closer to the application and not on remote 
servers. Intel alone in the past few years has acquired several 
companies (Movidius, MobileEye, Altera, and Nervana) [36], 
related to dedicated hardware for real-time image process-
ing and execution of neural networks. Unfortunately, the 
current trend of training state-of-the-art performing deep 
learning models requires computational and power re-
sources that might only be accessible by large corporations 
in the near future. Researchers ought to focus on develop-
ing computationally efficient hardware and algorithms for 
deep learning. To this end, Neuromorphic computing plat-
forms offer an attractive alternative for executing efficient-
ly neural network models [13]. However, up till now very 
limited research has been performed on training directly 
on neuromorphic hardware, which would yield the largest 
power savings. Additional advantages of training directly 
on the device would also open new possibilities for neural 
networks that are able to learn to adapt to changes in the 
environment and changes on the hardware (e.g. circuit fail-
ures or hardware degradation).
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