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Abstract
Dyslexia is a neurodevelopmental disorder of word-level processing. Ιt is typically diagnosed at school age, when chil-
dren are expected to learn to read and spell accurately and fluently. One of the neurobiological traits that character-
ize children with dyslexia is the atypical cerebral lateralization of language. Typical cerebral lateralization of language 
-meaning increased activation of the left hemisphere compared to the right one during language tasks- is shown for 
the majority of neurotypical individuals. However, hemispheric activation in children with dyslexia during language 
processing is more bilateral or right-lateralized. There is evidence that cerebral lateralization of language is partially 
or completely established before the onset of literacy training, in infancy or kindergarten years. Therefore, atypical 
lateralization can also be observed in that age and provide an indication of the risk for dyslexia prior to diagnosis. In 
the present review, our main focus is to present neuroscientific evidence that has associated different components of 
the cerebral lateralization of language -namely, functional, structural, functional connectivity, and neurogenetic- with 
the risk for dyslexia. In addition, we stress out the gap of knowledge regarding the cerebral lateralization of written 
language in children and we present our future goals to address this gap.
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“There is no symmetry in nature; one eye is never exactly the same 
as the other” ~ Edouard Manet (1832-1883; famous French painter).

Introduction

Asymmetry or laterality is evident in every aspect of nature 
including the human brain. Cerebral laterality provides an evo-
lutionary advantage through better performance and more 
efficient response (1, 2). There are multiple cognitive and mo-
tor functions that display a pattern of cerebral lateralization in 
the majority of individuals (3-6). One of the most well-studied 
manifestations of cerebral laterality is the cerebral lateraliza-
tion of language (7, 8). This lateralization has been found to be 
weaker in children with dyslexia, but also in children at risk for 
dyslexia, compared to neurotypical children (e.g., 4). Dyslex-
ia, a Greek word indicating an impairment at a word level, is 
characterized by difficulty in recognizing, storing, retrieving, 
and representing speech sounds leading to deficient reading 
accuracy and fluency as well as difficulties in spelling in spite 
of normal intelligence (4, 9-13) and adequate schooling (12). 
In the context of this review, we will discuss neuroscientific 
data that show that dyslexia is associated with atypical later-
alization of language-related regions. We will also stress out 
the paucity of studies of cerebral lateralization of written lan-
guage in children with dyslexia and how we aim to address 
this gap in the literature.

Atypical lateralization in dyslexia

Language is a fundamental component of human evolution 
and society. A plethora of neuroimaging and neurophysiology 
studies have established that language is typically left-later-
alized for the majority of individuals, meaning that the lan-
guage-related regions of the left hemisphere are more acti-
vated compared to the respective regions of the right hemi-
sphere during language tasks (5,14-16). Differences between 
brain hemispheres in gene expression (3,6,17), volume (18,19), 
structure (3,6), and connectivity (5,8,18,20-22) might underlie 
this functional asymmetry. Although it is generally agreed that 
a clear language lateralization pattern is formed by the age 
of six or seven (23), there are contradictory findings regard-
ing language lateralization in infancy and in early childhood 
(10,11,24-38); most findings suggest that brain activation is 
bilateral during language comprehension for the first three 
years of age and it progressively becomes more left-lateral-
ized (e.g., 27,32,33). However, there are also studies showing 
that left lateralization of language is apparent in neonates 
(30) and that there is no change in the degree of lateralization 
between ages one and five (29). Atypical language lateraliza-
tion, meaning bilateral or right-shifted activation, is associated 
with left- and mixed-handedness in neurotypical individuals 
(5,15,39,40) and with neurodevelopmental disorders, such as 
autism spectrum disorder (41) and schizophrenia (42), but also 
language disorders, such as dyslexia (43-45).

In dyslexia, brain regions that show atypical lateralization 

during language tasks include the left inferior gyrus and the 
left temporo-parietal cortex, together with other posterior 
perisylvian areas of the left hemisphere (44,46-53). These 
regions are associated with phonological awareness, mean-
ing the ability to comprehend, analyze, and manipulate the 
sound components of speech (54). The accompanying pho-
nological deficit is considered the most prominent character-
istic of dyslexia (9,44,55-57). In fact, appropriate educational 
interventions focusing on the amelioration of phonological 
awareness have been shown to lead to the reorganization of 
the brain to approximate the lateralization profile of typically 
developing children (58,59). Children are usually entailed in 
these programs after having developed the symptomatology 
and having been diagnosed with dyslexia, although earlier 
intervention has better performance outcomes (58).

Dyslexia also affects other trajectories of information pro-
cessing (48,60,61). Such aspects, which are also impaired but 
do not seem to have a causal role in dyslexia, are audiovisual 
stimuli integration (62-66), working memory (67), and writing 
(44,57,68), as well as writing problems - the latter being the 
most difficult to overcome (13,55,57,69). Brain regions asso-
ciated with visual and auditory processing show impaired 
functional connectivity and activation patterns (22,66), while 
aberrant morphology of parietal regions is linked to working 
memory problems (70). Although there is also evidence of 
structural and functional abnormalities in regions associated 
with writing (49,71,72), the neurological underpinnings for 
cerebral lateralization of written language in children with 
dyslexia have never been assessed.

When it comes to the factors that might prelude the devel-
opment and manifestation of dyslexia symptoms, we should 
take into consideration that dyslexia is a disorder of neuro-
biological origin (73), while also being subject to environ-
mental conditions. It has a heterogeneous genetic basis and 
it is highly heritable, but not through Mendelian inheritance 
(47,55,58,67,74,75). Family history of dyslexia (58) and the gen-
eral literacy environment (76), but also prenatal exposure to 
testosterone (77) and the sex of the individual (47) are factors 
that influence acquiring and expressing the dyslexia phenotype. 
Dyslexia often coincides with other learning disorders, such as 
dysgraphia and attention deficit hyperactivity disorder (73,78). 
Children with dyslexia with or without these comorbidities fall 
within the normal range of cognitive performance before the 
occurrence of early symptoms (9,48,58,79-81).

The full symptomatology of the disorder emerges not ear-
lier than school age, when children with dyslexia encounter 
more difficulties in reading, spelling, and writing compared 
to their classmates (9,58,73). Having said that, it has been 
shown that neurodevelopmental disorders can be predicted 
earlier than the occurrence of the symptoms, using not only 
behavioral, but also neurobiological indicators (18,58,82). In 
the next paragraphs, we will review how the risk for dyslexia in 
pre-readers is associated with one such neurobiological indi-
cator: cerebral lateralization for language. We will specifically 
review evidence on atypical functional and structural lateral-
ization, but also evidence regarding functional connectivity 
and neurogenetics.
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Neuroimaging studies in children at risk for 
dyslexia

Starting with functional laterality, in individuals with dyslexia, 
regions related to phonological processing are often atypically 
lateralized, as mentioned above. Dębska et al. (2016) found that 
the same regions that are shown to be atypically lateralized 
in individuals diagnosed with dyslexia, viz the temporo-pa-
rietal region, the occipito-temporal cortex and the inferior 
frontal gyrus, were less left-lateralized during phonological 
processing in Polish kindergarten children at familial risk for 
dyslexia compared to typically developing children of their 
age group, despite the absence of behavioral indicators (83). 
In fact, the activation of the left ventral occipito-temporal 
cortex in phonology-related tasks has been positively cor-
related with the ability of kindergarten children at varying 
risk for dyslexia to respond to short educational training (84). 
Moreover, children at risk for dyslexia, who do not respond 
to training, display underactivation in the left hemisphere 
(85). Davis et al. (2011) also showed that the efficacy of an 
intervention for children at risk for developing dyslexia is 
associated with the degree of activation of the left superior 
temporal gyrus (85). Other neuroimaging studies provide ev-
idence that the left superior temporal gyrus participates less 
in the processing of phonological information in children at 
risk for dyslexia compared to controls, while the homologous 
region of the right hemisphere is more engaged (86,87). De-
creased leftward lateralization in children at risk for dyslex-
ia has also been related with a rightward shift of activation 
during phonological processing tasks (87-89). In contrast to 
these findings, a recent study by Nora et al. (2021) suggest-
ed that the underactivation of the left hemisphere and the 
overactivation of the right in early primary school children 
at risk for dyslexia are not associated with an impairment in 
phonological processing as assessed by pseudoword repe-
tition, but rather with a difficulty in performing better over 
repetition due to an implicit memory deficit (56). This finding 
is in line with the observation of persistent working memory 
problems in individuals with dyslexia (9, 67).

Atypical structural laterality often underlies atypical func-
tional laterality, such as in the cases described above. The de-
creased leftward lateralization observed in temporo-parietal 
and occipito-temporal regions of young children at risk for 
dyslexia are indeed accompanied by analogous differences in 
gray matter areas compared to typically developing children 
(16,90). For example, the planum temporale is a region that is 
associated with phonemic processing, one of the initial stages 
of phonological awareness. In the neurotypical population, 
the left planum temporale is larger than the right planum 
temporale (16,66,91). However, the left planum temporale 
of individuals with dyslexia is smaller than the right homol-
ogous region (16). This effect in planum temporale size of 
twins has been attributed to intrauterine events (16,92). Van-
derauwera et al. (2018) showed that even young pre-readers 
at risk for dyslexia show this atypicality and, hence, a smaller 
left planum temporale can be considered an early indicator 
of dyslexia (16).

Differences in the activation of brain regions could be 
further attributed to changes in functional connectivity. Dis-
connections between language-related regions of the left 
hemisphere and failure of regions of the right hemisphere 
to decouple have been reported in many cases of dyslexia 
(9,18,93-95). These impairments also seem to precede the 
occurrence of dyslexia symptoms. Preschool children with-
out risk for dyslexia show left lateralization of white matter 
tracts interconnecting language-related regions, while in 
children at familial risk for dyslexia these tracts show a right-
ward lateralization (16,96,97). The differences in white matter 
connectivity between infants at familial risk for dyslexia and 
controls that can be observed even earlier than the second 
year of life are in fact specific for language-related regions of 
the left hemisphere and they can help explain the functional 
disconnection between these regions (98).

Connectivity abnormalities are also evident in the auditory 
cortex of individuals with dyslexia, along with atypical func-
tional and structural laterality (22,66,99-101). Thus, observa-
tions of atypical gyrification and connectivity of the left pri-
mary auditory cortex in children with dyslexia, both prior and 
after literacy training, could indicate the presence of reading 
problems resulting from preexisting auditory problems (56). 
In fact, auditory stimuli processing has gained attention as a 
neurological trait that can lead to early detection of dyslexia 
risk, potentially because it is more feasible to assess auditory 
stimuli processing in infants or preschoolers, compared to pho-
nological processing. In this vein, studies using event related 
potentials (ERP) -meaning small voltage signals generated by 
different brain regions (102)- have provided electrophysio-
logical evidence for the hemispheric activation in children at 
risk for dyslexia in response to auditory stimuli. Most studies 
have shown that ERPs derived from children as young as even 
6 months old in response to speech stimuli show the expected 
atypical asymmetry -specifically decreased left hemispheric 
involvement and increased right hemispheric involvement- 
leading to a more bilateral or right-shifted lateralization pattern 
(82,103-109). However, according to Cartiani et al. (2016) and 
Thiede et al. (2019), young children of typical development 
show a rightward lateralization of their responses to speech 
stimuli, while at-risk children display a more bilateral distribu-
tion of response (110,111). Finally, van Zuijen et al. (2013) have 
found that auditory stimuli were predominantly processed by 
the right hemisphere in both typically developing and at-risk 
2-month-old infants (112). It is apparent that further research 
is needed on this topic.

Genetic studies on dyslexia

Given the hereditary nature of dyslexia, genetic polymorphisms 
have been studied as indicators of atypicalities in the cerebral 
lateralization of language. Such polymorphisms can serve as 
a very early warning for potential future reading difficulties. 
An increasing number of genes (up to 13) and chromosomal 
loci (up to 42) have been identified during the past decades 
(113,114). At least nine genetic risk loci and ten candidate 
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genes (e.g., DYX1C1, DCD2, KIAA0319, ROBO1) have been 
associated with the risk for developing dyslexia, and most of 
them are involved in brain development (56,98,115). Experi-
mental manipulation of these genes in studies with rodents, 
accompanied by postmortem studies of individuals with 
dyslexia, have provided evidence that the majority of these 
susceptibility genes are implicated in neuronal migration 
(116,117). Risk alleles for the DCD2 and the KIAA0319 genes 
have been mainly associated with a reduced volume of white 
matter tracts lying within the left temporo-parietal area of the 
brain and, hence, leading to reduced activation of this area 
during language tasks (50,92,118). In fact, the rs793842 allele 
of DCD2 is associated not only with a decrease in the volume 
of the white matter trajectories between the arcuate fascicu-
lus and the posterior superior temporal sulcus, but also with 
reduced gray matter thickness in the left middle temporal 
gyrus (50). Overall, the presence of some risk alleles in the 
genome could play an important role in the development of 
the atypical asymmetry profile that is associated with dyslexia 
or with the risk for the disorder. 

Conclusions and future directions

To summarize, neuroimaging and genetic studies have allowed 
us to investigate cerebral lateralization of language prior to 
reading age and, thus, before the onset of reading difficulties 
in children at risk for dyslexia. We can conclude that most ev-
idence points to the fact that, on average, children at risk for 
dyslexia show a different lateralization pattern compared to 
typically developing children, be it a less left-lateralized, more 
bilateral, or more right-lateralized pattern. Of note there is also 
some contradictory evidence, reporting either an absence of a 
difference between the two groups or a rightward lateralization 
in controls. However, most studies have sampled a relatively 
small number of children and even less infants.

An important limitation of the literature on cerebral lat-
eralization of language in children at risk for dyslexia, is that, 
given the young age of these children, all the previously men-
tioned findings come from the assessment of oral language 
comprehension and production. Cerebral lateralization of 
written language in children has not been investigated to 
date, even though, worldwide, about 90% of adolescents (119) 
use written language for communicational and educational 
purposes. As a consequence, there are no studies regarding 
the cerebral lateralization of written language in children at 
risk for dyslexia. Moreover, there are no studies in children 
that have already developed dyslexia, for whom writing dif-
ficulties are a persisting problem. In our future studies, we are 
planning to assess this dimension of language lateralization 
in children at risk for dyslexia using functional Transcranial 
Doppler ultrasonography (fTCD).

FTCD is a non-invasive neurophysiological technique that 
measures the changes in blood flow velocity in the two mid-
dle cerebral arteries, right and left, during a task, as a proxy 
for the level of activation of each hemisphere (120,121). FTCD 
provides comparable results to other well-known neuroimag-

ing techniques, such as functional Magnetic Resonance Im-
aging (fMRI; 121,122), but it has lower spatial resolution and 
fails to penetrate the scalp in 5-20% of individuals (121,123). 
The advantages of fTCD over the more popular techniques 
is that it is inexpensive, portable, and unaffected by bodily 
movements at a range from facial movements during speech 
to driving a car (121, 124,125). This is particularly important 
for the study of writing, which in other techniques can only 
be studied with the use of additional equipment. Taking these 
advantages into account, fTCD allows for the relatively easy 
and inexpensive collection of neurophysiological data in cases 
that functional scanning is problematic, such as in infants or 
children (124,126). In fact, fTCD has been applied to infants 
as young as 1 year of age (29,127). Moreover, this technique 
is widely used to study cerebral lateralization across different 
age groups, which makes it eligible for longitudinal studies 
(e.g., 128-138). Therefore, fTCD can be employed to assess 
cerebral lateralization of written language in children at risk 
for dyslexia and typically developing children.

The specific aims of our future studies are: (a) to examine 
the differences in cerebral lateralization of written language 
between young primary school students at risk for dyslexia 
and typically developing age-matched controls, (b) to inves-
tigate how more severe than expected difficulties in writing 
might affect the pattern of cerebral lateralization of written 
language in at-risk children, and (c) -given the shift in the ce-
rebral lateralization of oral language following phonological 
educational interventions- to assess whether the pattern of 
cerebral lateralization of written language in children at risk 
for dyslexia shifts to approximate the lateralization pattern 
of typically developing children, following a 3-month-long 
phonological intervention. This line of research will add to the 
existing literature by studying cerebral lateralization of written 
language in children and in particular in children at risk for dys-
lexia and by evaluating the impact of an intervention in their 
lateralization profile, both for the first time in the literature.

Overall, the neurological underpinnings of dyslexia are 
present long before the manifestation of the symptoms that 
will allow the formal diagnosis of the disorder. Genetic risk 
and structural or functional atypical lateralization related to 
oral language could be evident as early as in embryonic life/ 
fetal stage and infancy or kindergarten years, respectively. This 
evidence -taken together with the observations of atypical 
cerebral lateralization of oral language in older children and 
adults with dyslexia- allows us to suggest that atypical cerebral 
lateralization of oral language is a persisting characteristic of 
dyslexia. Notwithstanding the importance of written language 
in communication and in education and the significance of 
writing difficulties in cases of dyslexia, cerebral lateralization 
of written language is significantly under-studied. Additionally, 
no studies have investigated the pattern of cerebral lateraliza-
tion of written language in children with, at risk, or without 
dyslexia. Therefore, our future studies will fill this gap in our 
knowledge, allowing us to better understand the phenome-
non of cerebral lateralization of written language.
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